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Abstract: This review provides a comprehensive overview of the fast-paced and intertwined evolution of three 

pivotal fields: next-generation sequencing (NGS) technologies, bioinformatics, and artificial intelligence (AI). 

The paper begins by tracing the development of sequencing technologies and highlights how advancements in 

genetic sequencing have led to an explosion of biological data, necessitating the rise of bioinformatics for data 

management and analysis. The review next covers the primary steps and methods used in bioinformatic analysis 

and concludes by reporting some of the technical and biological challenges in which AI methods have been 

applied. 

 

 

Introduction 

Determining the order of nucleic acids in pol-
ynucleotide molecules and its functional meaning 
has been a major biological question since the dis-
covery of the molecular structure of DNA in 1953 
(1). Only twenty-four years later in 1977, the first 
method for DNA sequencing was published by 
Fredrick Sanger and colleagues, who developed the 
“chain-termination" or dideoxy technique (2). Im-
provement of this groundbreaking method repre-
sented the first generation of DNA sequencing tech-
nologies, which produced reads nearly one kilobase 
(kb) in length. The development of additional tech-
niques such as polymerase chain reaction (PCR) (3) 
in 1983 and recombinant DNA technologies pro-
vided the means for generating high quantities of 
DNA required by first-generation technologies, 
triggering the genomic revolution and ultimately 
the first draft of the human genome in 2001(4). A 
pivotal turning point was achieved in 2005 with the 
advent of Next Generation Sequencing (NGS) tech-
nologies (5), allowing for the massive and parallel 
sequencing of whole genomes. In the last decade, 
sequencing technologies have expanded to include 
methods for RNA sequencing (6,7), giving rise to 
the transcriptomic field and to methods for unveil-
ing the structural features and environmental-me-
diated modifications of chromatin and DNA (8), the 
epigenomics field, and the single-cell omics technol-
ogies starting in 2009 (9).  

 
Artificial intelligence (AI) was born and rap-

idly improved within this same time frame (Figure 
1). Here again, the initial milestones date back to the 
early 1950s, with the Turing test and the first use of 
the term “Artificial Intelligence” at the Dartmouth 
Conference by John McCarthy (10). In the following 
three decades, the IT sector released groundbreak-
ing innovations, such as the Internet and World 
Wide Web, as well as algorithms that laid the foun-
dation for deep learning, like Convolutional Neural 
Networks (CNN), Support Vector Machine (SVM) 
and Backpropagation (11–14). In less than a decade, 
the AI Deep Blue was able to outperform human be-
ings in complex tasks such as playing chess. Starting 
in 2001, the conjunction of increasingly powerful 
computational resources (storage space and pro-
cessing speed) (15) and the biotechnological devel-
opment that led to NGS, increased the potential for 
tandem use of AI and biology. NGS enabled a mas-
sive increase in omics data production, necessitat-
ing the development of computational methods 
able to handle such data. The complexity of biolog-
ical processes and data provided opportunities and 
challenges that machine learning techniques are 
well suited to solve. Consequently, starting from 
the early 2000s, computational biology became an 
increasingly relevant field. 
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As molecular biology becomes more data-in-
tensive and AI algorithms better able to handle bio-
logical complexity, the interconnection between 
these fields is bound to strengthen. In this review, 

we cover the main technological features of NGS 
technologies and bioinformatic analysis and pro-
vide an overview of current applications of AI on 
sequencing data. 

Figure 1: Timeline of improvement milestones in genomics and sequencing technologies (blue arrows), informatics and artificial 
intelligence (orange arrows) and computational biology (green arrows). 

 Overview of illumina technology and se-

quencing assays 
 NGS refers to modern high-throughput se-

quencing technologies that can be applied to DNA 

or RNA. Illumina platforms are the NGS technology 

most frequently used in research and clinical set-

tings, and will therefore be the focus in this paper. 

  

 The sequencing workflow starts with library 

preparation, which varies between different omics. 

In genomic workflows, DNA is fragmented either 

mechanically, enzymatically, or with transposons in 

fragments of appropriate length (typically around 

400bp). Next, blunt ends at both ends are repaired: 

typically, 5’ ends are phosphorylated and 3’ ends 

are repaired with Adenine residues. Subsequently, 

adapters are ligated to both ends. Depending on the 

experimental design, it is then possible to select ge-

nome regions of interest via enrichment (such as the 

exome or a more restricted selection of genes in tar-

get sequencing) or retain the entire genome. 

 

 RNA sequencing is a versatile high through-

put sequencing technique introduced in 2008  that 

allows for the investigation of gene expression, as 

well as alternative splicing , allele-specific expres-

sion , variation in linear nucleotide sequence, novel 

transcript expression  and gene fusion events . The 

appropriate library preparation protocol for RNA 

sequencing must be considered based on the 

study’s questions in order to reduce bias . There are 

four main categories of possible library prepara-

tions: i) total RNAseq: all structural, regulatory, 

coding and non-coding RNAs are sequenced, ii) 

RNAseq with ribosomal RNA reduction: only 

rRNAs useful for phylogenic reconstruction are 

kept together with regulatory and coding RNAs, iii) 

cDNA capture: only coding RNAs are enriched us-

ing probes targeting exon sequences, iv) polyA se-

lection: only mature mRNAs are isolated through 

poly-T probes that bind the 3’ poly-A tail of mRNAs. 

 

The third main omic in terms of sequencing of 

nucleic acids is epigenomics. Gene expression can 

strongly depend on epigenetic regulation in terms 

of changes in the accessibility of certain genomic re-

gions through DNA methylation, histone modifica-

tions, three-dimensional chromatin organization, 

and post-transcriptional regulation mechanisms. 

Each type of epigenetic modification can be meas-
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ured via an experimental procedure performed be-

fore the library preparation described above. A 

thorough overview of these complex techniques can 

be found in Mehrmohamadi et al, 2021[24].  

 

There are four main categories of epigenomic 

assays: i) DNA methylation: normally investigated 

with bisulfite-conversion-based libraries, where 

only unmethylated cytosines are converted to uracil 

(23) ii) histone modifications: mostly studied with 

chromatin immunoprecipitation assays (ChIP-seq), 

where crosslinked DNA is treated with antibodies 

targeting the histone modification of interest and 

pulled down (24), iii) chromatin accessibility: stud-

ied with assays based on the fact that open chroma-

tin is more accessible to fragmentation agents, like 

digestion enzymes (e.g. DNase-seq)  or transposase 

(e.g. ATAC-seq)(25), iv) 3D organization: mostly in-

vestigated with Chromatin Conformation Capture 

(3C) derived assays (such as 4C-seq, Hi-C, ChIA-

Drop), whereby nuclei DNA is crosslinked, chi-

meric DNA molecules made of genomic regions 

close to one another are formed, and the proximal 

genomic regions in the 3D space of the nucleus are 

measured using pairwise frequencies between ge-

nomic loci (26). 

 

Once the library is loaded into the sequencer, 

it is pumped onto a flow-cell where each single-

stranded fragment hybridizes to flow-cell adapters 

on both ends forming a “bridge” structure that con-

fers the name to this step called “bridge amplifica-

tion” (27). After cluster generation, sequencing by 

synthesis with reversible chain terminators and a 

fluorophore corresponding to each of the four nu-

cleotides (A, C, T, and G), or bases, takes place. The 

fluorophore wavelength together with its intensity 

determines the base call. The acquired optical sig-

nals for each lane of the flow cell are converted into 

base call format files (bcl file) that represent the out-

put of sequencing and the first raw input for bioin-

formatic analysis (Figure 2). 

 

Figure 2: Schematic representation of a targeted genomic library preparation workflow and Illumina sequencing reaction. Figure 
adapted from images courtesy of www.illumina.com (https://www.illumina.com/science/technology/next-generation-sequenc-
ing.html, https://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf ). 

Bioinformatic analysis 

Bioinformatic analysis involves several steps 

of computationally intensive data transformations, 

each requiring specific tools. Substantial research 

has been done to develop reliable software capable 

of performing such data transformations and to 

make the computational analysis of NGS data re-

producible. For example, package and environment 

management systems such as CONDA allow the in-

stallation and management of software developed 

in different languages for different operating sys-

tems. 
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3.1.  Primary Data Analysis 

 The primary analysis of Illumina raw data 

consists in demultiplexing bcl data into FASTQ files. 

This process transforms the binary raw files ob-

tained from the optic signal acquired during se-

quencing into a text file in which the nucleotide se-

quence is matched by a PHRED score defining the 

quality of the nucleotide, or base, call made by the 

sequencer. During this step, index sequences con-

tained in each fragment are used to group all calls 

belonging to the same sample into a single FASTQ 

file. Depending on the sequencer, this step is per-

formed directly on-instrument by Real-Time Anal-

ysis software or afterwards as first step of a com-

mand line pipeline (28). 

 

3.2  Secondary Data Analysis 

 Secondary analysis of genomic data is typi-

cally a standardized workflow used in diagnostics 

and research . It generally consists of three main 

steps: mapping onto the reference genome, post-

alignment processing and, if useful, variant calling. 

Workflow management systems such as Snake-

make  and Nextflow  address the need to concate-

nate the steps required by bioinformatic pipelines 

while providing an efficient usage of computational 

power through process parallelization. The sam-

ple’s sequence is expressed in FASTQ files contain-

ing the nucleotide sequence and quality scores de-

rived from millions of short reads. Quality checks 

are typically performed first in secondary analysis. 

One of the most common tools for this task is 

FASTQC . Adapter reads and base calls with low 

quality scores are trimmed from the sequence using 

specific tools such as Trimmomatic , fastp  or cu-

tadapt . Mapping algorithms are then used to iden-

tify a location in the reference genome that matches 

the experimental read generated via sequencing. 

Software settings allow for varying degrees of toler-

ance towards base mismatches and extra spaces to 

allow for the detection of possible variants. One 

commonly used tool for mapping NGS sequences to 

a reference genome is the Burrows-Wheeler Align-

ment (BWA). The output of mapping algorithms are 

stored as sam (sequence alignment map) files, 

which contain all the information surrounding the 

mapping procedure in the metadata section, along 

with data concerning the mapped genomic region 

and mapping. The binary counterpart to a sam file 

is a bam file, which represents the type of data that 

will undergo further post-alignment processing 

and variant calling. Post-alignment processing con-

sists of sorting, marking duplicates and indexing 

the bam file. The variant calling step aims to iden-

tify single nucleotide variants and small insertions 

and deletions, reported in Variant Call Format (VCF) 

files. 

 

3.3  Tertiary Data Analysis 

 Tertiary analysis of genomic data uses the list 

of variants reported in the VCF file to biologically 

interpret the data. This component of data analysis 

is highly adaptable depending on the experimental 

question. The first and most common step is variant 

annotation, aimed at obtaining functional infor-

mation about the type of nucleotide substitution 

and its predicted effect. A more classic approach is 

to consider only the variants that affect the primary 

structure of the coded protein, like missense or 

truncating variants, especially if in-silico variant 

predictor tools describe them as likely pathogenic. 

Functional analysis on groups of significant genes is 

often performed with network approaches or over-

representation methods. In recent years, data sci-

ence and machine learning methods applied to ge-

nomic data have been a resourceful approach for ac-

quiring a more complete understanding of poly-

genic contributions in complex diseases (39) and in 

the context of precision medicine (40,41). Some of 

these applications will be further discussed section 

5. 

 

5. Applications of ai in genomics and transcriptomics 

 ML and DL methods have been applied to se-

quencing data covering various research scopes and 

topics. Here, we describe some of the most relevant 

fields of application, focusing first on the use of ML 

and DL for technical issues associated with NGS 

data processing and analysis, and then with exam-

ples of how these methods are used to explore open 

biological questions. This section aims at providing 

common, promising or exemplifying applications 

of AI methods on NGS data in biology and bioinfor-

matics and should not be considered a complete 

overview of all its possible applications. 

 

5.1 Applications on technical problems 

 

Secondary bioinformatic analysis: variant calling 
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 The accurate discovery of single nucleotide 

variants from billions of short reads remains a chal-

lenging step in bioinformatics because library prep-

aration, sequencing and data processing tools are 

error-prone procedures. These issues become even 

more apparent when the object of study are low-fre-

quency somatic mutations or when the input DNA 

is of lower quality. Most variant callers use statisti-

cal methods (such as logistic regression, hidden 

Markov models, naïve Bayes) to model error 

sources and to distinguish whether differences be-

tween experimental reads and the reference ge-

nome are caused by true genetic variants or errors. 

In recent years, deep learning has been applied to 

address variant calling on NGS data: a common ap-

proach is to address the problem as one of image 

recognition, where a Deep Neural Network ana-

lyzes sequencing data that are transformed as im-

ages of read pileups of true genotype calls to com-

pute the genotype likelihoods at each locus. Two of 

the first and most popular tools of this kind are 

DeepVariant (42) and DeNovoCNN (43), with the 

latter specifically used to address the identification 

of de novo mutations. Both tools showed higher ac-

curacy compared to classical methods. An alterna-

tive approach is presented in HELLO (44), whereby 

comparable performances are obtained by design-

ing Deep Neural Networks that examine aligned 

reads to predict the status (ref or alt) of each candi-

date allele given the support for that allele in rela-

tion to the support for the remaining alleles at the 

genomic site. 

 

Tertiary bioinformatic analysis: Variant effect prediction 

 Variant Effect Prediction (VEP) are computa-

tional tools that provide a prediction about the func-

tional significance of a single nucleotide variant 

(SNV). The growing use of NGS technologies for 

advanced diagnostics has increased the need to bet-

ter classify variants of uncertain significance. VEPs 

rely on different types of prior knowledge, such as 

protein sequence and structural information, evolu-

tionary sequence conservation, functional experi-

ments, epigenomic data and association studies to 

produce an effect score for the variant. In super-

vised VEPs, the algorithm is trained on a set of la-

belled SNVs known as benign or dam2aging ac-

cording to previous knowledge to perform a classi-

fication task. Using this prior knowledge, these 

methods compute a score expressing the predicted 

effect of the variant. Examples of well-performing 

supervised VEPs on human samples are SNP&GO 

(45), PolyPhen2 (46) and DEOGEN2 (47). Unsuper-

vised methods do not use any labelled data and 

usually rely exclusively on the evolutionary conser-

vation of the genomic locus. This group also in-

cludes deep learning methods, like DeepSequence 

(48), considered by a recent benchmark study as the 

top-performing tool among 46 tested in deep muta-

tion scanning data (49). An example of a semi-su-

pervised deep learning method is the Illumina Pri-

mateAI (50), which has performed well in the study 

of rare diseases. 

 

Visualization of high dimensional datasets 

 NGS data are highly dimensional because 

each sample is sequenced simultaneously. The huge 

amount of information contained in these data can 

represent an obstacle to the identification of its most 

meaningful features. Dimensionality reduction 

techniques such as PCA, t-SNE and UMAP are used 

to identify latent components in the data that are 

not easily accessible due to the high number of var-

iables. Data are thus transformed into a lower di-

mensionality while maintaining the relationships 

between data points (e.g., samples) as much as pos-

sible. These methods are extremely versatile. For ex-

ample, they can be used in the pre-processing of 

bulk RNA-seq data to identify possible outliers and 

relevant covariates(51), to search for recurrent pat-

terns on targeted DNA sequencing data in different 

classes of samples (52), or to visualize single-cell 

RNA sequencing data. In this context, dimensional-

ity reduction techniques coupled with clustering al-

gorithms are used for cell-type identification tasks, 

identifying groups of cells that share similar expres-

sion profiles. Another application of these methods 

is lineage trajectory inference(53), which involves 

the reconstruction of the position of each individual 

cell on the lineage trajectory based on scRNA-seq 

profiles with different time points, allowing for the 

study of dynamic processes such as the cell cycle, 

cell differentiation and cell activation. 

 

6. Future Perspectives 
In this review, we summarized the crucial as-

pects and timeline of NGS technologies, bioinfor-
matics and AI, highlighted how they are connected 
in a holistic process, and explained the potential 
revolutionary insights that can be gained from their 
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concurrent use. Computational and molecular biol-
ogy have and are continuing to advance at an im-
pressive pace. Machine and deep learning, while 
relatively recent breakthroughs in the biological 
and biomedical fields, will almost certainly play an 
increasing role. Substantial investments are being 
made by leading technology companies that, to-
gether with academic researchers, are implement-
ing innovative methodologies, software and archi-
tectures tailored specifically to answer biological 

questions. Concurrently, we are witnessing the im-
provement of molecular techniques while sequenc-
ing experiments are evolving and becoming more 
affordable, as evident by the growing interest in 
long-read sequencing. Taken together, these inno-
vations are a new frontier of research and have the 
potential to strongly affect our ability understand 
and interact with genetic information.  
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