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Abstract: In the rapidly evolving field of genomics, our capacity to decipher genetic data encoded in DNA has 

been transformed by Next Generation Sequencing (NGS) technologies. These advanced technologies produce 

an enormous volume of data, posing substantial challenges in extracting meaningful biological insights. 

Artificial intelligence (AI) algorithms offer distinctive possibilities to unravel the biological information 

embedded in such extensive and intricate datasets. This review offers a synopsis of AI classifications and 

algorithms, elucidating how these techniques can be employed on sequencing data. Subsequently, a selection of 

the most typical, promising, or illustrative applications of AI on NGS data to tackle unresolved technical or 

biological issues are showcased. 

 

 

Introduction 

Artificial intelligence (AI) algorithms and se-
quencing technologies represent two groundbreak-
ing innovations that witnessed outstanding im-
provements in the last few decades. In both AI and 
sequencing technologies, the first ilestones date 
back to the early ‘50s, and the rapid and simultane-
ous advancements in the two fields resulted in the 
new hybrid research branch of computational biol-
ogy[1]. The large and complex datasets produced 
by sequencing experiments contain the information 
needed to understand many unanswered biological 
and medical questions, but that information is often 
difficult to extract. As the biomedical sector is be-
coming more data-intensive and AI algorithms 
more able to handle biological complexity, the inter-
connection between these two research fields is 
bound to strengthen.  
 
Overview of artificial intelligence, machine 

learning and deep learning 

Artificial Intelligence (AI) is a broad term that 
covers a plethora of computational approaches and 
algorithms able to mimic cognitive abilities (Figure 
1). The term Machine Learning (ML) refers to sev-
eral algorithms able to perform different tasks, such 
as pattern recognition, classification and prediction 
tasks based on models derived from existing data. 
The key feature of these methods is the absence of 
coded algorithms given by the developer to de-
scribe the steps towards which input data are trans-
formed in output results. The ML method therefore 
learns from the data to create a hierarchy of con-
cepts, each one defined by its relation to simpler 
concepts, that it uses to perform a task. By building 
knowledge from previous data and training, this 
approach avoids the need for the developer to ex-
plicitly define all the knowledge that the machine 
needs. The goal of many ML tasks is to optimize the 
model performance so that they can be generalized 
on independent datasets (generalization perfor-
mance). 
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Figure 1: Schematic representation of differences and shared features between Artificial Intelligence (AI), Machine 
Learning (ML) and Deep Learning (DL). 

 ML methods are usually defined either as su-

pervised or unsupervised. In unsupervised learn-

ing, no predefined labels are provided for the ob-

jects under study. Here, the goal is to explore the 

data and discover similarities between objects (e.g., 

samples) based solely on the input data. Clustering 

and most dimensionality reduction techniques rep-

resent examples of unsupervised algorithms. Unsu-

pervised methods are commonly used in explora-

tory data analysis and for quality control tasks to 

identify potential issues such as outliers and batch 

effects, as well as to discover recurrent patterns and 

unknown sources of variation in highly dimen-

sional datasets [2,3]. Examples of unsupervised di-

mensionality reduction techniques are principal 

component analysis (PCA), t-distributed stochastic 

neighbor embedding (t-SNE)[4] and Uniform Man-

ifold Approximation and Projection (UMAP) [5]. 

PCA is a fast, linear transformation, which maps the 

data over a space whose coordinates are linear com-

binations of input features that capture most of the 

variance of the data. This algorithm is usually pre-

ferred when the aim is to separate the data points as 

far as possible. On the other hand, methods such as 

UMAP or t-SNE rely on more complex 

mathematical assumptions and steps, to “guess” the 

manifold on which data are located. Such methods 

preserve only local similarities and hence produce a 

higher clusterization of the data in the embedding 

space, with data subpopulations more separated 

among themselves compared to PCA embeddings 

[6,7]. Clustering methods are used to identify in an 

unsupervised way groups of similar data points 

based on the measure of similarity of choice. Exam-

ples of commonly used clustering algorithms in se-

quencing data analysis are hierarchical clustering 

with dendrograms, K-means and Density-Based 

Spatial Clustering of Applications with Noise 

(DBSCAN) [8]. 

 On the other hand, supervised learning in-

volves using labeled data, where each input has an 

associated output. This allows the algorithm to 

learn a set of rules to predict the correct output for 

new input data based on its features, attributes, or 

labels. If the output is qualitative, then the process 

is called classification [9,10]. Otherwise, in the case 

of quantitative values, it is called regression. Well-

trained ML models can learn rules about the under-

lying patterns and relationships in the data that can 

then be applied to make accurate predictions on 
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new, unseen data. These rules can display new in-

sights into the relevant features used to correctly 

identify the studied classes[11]. Examples of classi-

fiers are decision trees, random forests, support vec-

tor machines and neural networks. Examples of re-

gression methods are linear or generalized linear 

models, with the possible addition of random ef-

fects (mixed-effect models), penalization terms 

(regularized models), non-linearity (e.g., kernel re-

gression), or basis functions (e.g., splines). Never-

theless, it is worth underlying that supervised and 

unsupervised learning are not formally defined 

terms, and the boundaries between them are often 

blurred since many ML methods can be used to per-

form both types of tasks[12]. 

 

Neural networks are ML algorithms consist-

ing of interconnected artificial neurons, which rep-

resent the building blocks of neural networks and 

deep learning algorithms[13]. Artificial neurons 

have as input a vector of values and compute 

weighted sums of these values followed by a non-

linear transformation. The activation function de-

fines whether the input values reach the threshold 

needed to activate the neurons and consequently 

determines the output of the node given the set of 

inputs received. The weights are parameters that 

are adjusted during the training step, as learning 

proceeds[11]. The term Deep Learning (DL) refers 

to multi-layered artificial neural networks with a 

high number of hidden layers used to extract pro-

gressively higher-level features from data. The first 

layer of neurons, also referred to as the input layer, 

is the one that receives the experimental input data, 

followed by layer two, made of neurons that receive 

as input the outputs of layer one, and so forth for 

deeper hidden layers[13]. The goal of these 

networks is to model a function f. In a classifier, for 

example, the function y = f (x) maps an input x to a 

category y. A feed-forward network defines a map-

ping y = f (x; θ) and learns from the training set the 

value of the parameters θ to model the function. 

Training a neural network involves optimizing its 

parameters (weights) to minimize a certain error 

metric, which is typically defined by a loss function. 

Such loss function measures the difference between 

the predicted output of the neural network and the 

actual output. Optimal weight updates are enabled 

by backpropagation, which is a well-established al-

gorithm in neural network training, as it enables the 

computation of the loss function's gradient with re-

spect to the network's weights. 

 

Neural networks can be categorized into three 

main types based on the type of architecture in 

which neurons are organized: feed-forward, recur-

rent, and convolutional (Figure 2). In feed-forward 

networks, the connections between nodes do not 

form a cycle, and the information proceeds exclu-

sively forward from the input layer to the hidden 

layers and lastly to the output layer. On the contrary, 

recurrent neural networks have connections that 

form cycles, allowing the output of a node to affect 

subsequent input to the same nodes. Convolutional 

neural networks are made of convolution kernels 

processing input data, followed by pooling layers 

simplifying the information to its most meaningful 

concepts, and ultimately followed by hidden fully 

connected layers for further data processing, like for 

example a prediction task. The ultimate output of 

the neural network represents its prediction or clas-

sification of the input data, which is built based on 

its experience of recurrent patterns learned from the 

data. 

 

Figure 2: Schematic representation of the three main types of neural networks: feed-forward neural network (a), recurrent neural 
networks (b) and convolutional neural networks (c). In all three representations, orange circles stand for the input neurons and 
green circles for the output neurons. In panel a, blue circles represent the hidden layers. In panel b, light blue circles indicate 
recurrent hidden layers, while in panel c, yellow circles indicate the kernels and the gray 3D squares represent convolutional layers. 
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Applications of AI in genomics and transcriptomics 

The complexity of data generated by high-

throughput sequencing technologies can make tra-

ditional analysis methods insufficient for identify-

ing patterns and extracting insights.ML and DL 

methods have been applied to sequencing data with 

a vast number of scopes. Here we provide a selec-

tion of some of the most relevant fields of applica-

tion. This section aims at providing common, prom-

ising or exemplifying applications of AI methods on 

NGS data in biology and bioinformatics, while it 

should not be considered a complete overview of all 

its possible applications in biology. 

 

Liquid biopsies and personalized medicine 

Liquid biopsies are minimally invasive diagnostic 

methods that analyze bodily fluids, such as blood, 

urine, or cerebrospinal fluid, to detect and monitor 

diseases, and are especially relevant in early diag-

nosis of cancer and neurodegenerative diseases 

[14,15]. These samples contain cell-free Nucleic Ac-

ids (cfNA), circulating tumor DNA (ctDNA), circu-

lating tumor cells (CTCs), exosomes, and other bi-

omarkers that allow the extraction of genomic, tran-

scriptomic and epigenomic information, which can 

be used for early detection, monitoring of progres-

sion and support personalized therapeutic deci-

sions to target the disease [15]. These types of data 

are extremely complex, subject to many confound-

ers and for most features characterized by a high 

signal-to-noise ratio. AI algorithms have signifi-

cantly advanced data analysis and interpretation of 

this data and consequently the whole field in sev-

eral aspects, such as in risk assessment and early di-

agnosis [16], disease subtype classification [17], 

treatment response prediction [18] and in monitor-

ing minimal residual disease [19]. For example, 

SVM were effectively used to predict the probabil-

ity of reoccurrence based on gene expression data 

or specific gene signature in different types of can-

cers[20,21], improving the monitoring of the molec-

ular profile of the patient’s tumor and the predic-

tion of personalized treatments at different times. 

Furthermore, ctDNA methylation patterns have 

been extensively studied with several ML classifica-

tion or regression methods as well as with neural 

networks to achieve effective early detection both in 

cancer research[22] and in the context of neuro-

degenerative diseases[23]. In this context, AI 

reaches some of the most notable results in terms of 

tangible impacts in molecular biology and medicine, 

and it is expected that its role in personalized med-

icine will increase in the near future. 

 

Regulatory genomics 

Regulatory genomics is the field of genomics that 

studies gene expression regulation trying to iden-

tify regulatory regions (such as enhancers, promot-

ers, transcription start sites (TSS), and genome ac-

cessibility) and the regulatory hierarchy between 

these regions and other genes. In this context, deep 

learning and more specifically Convolutional Neu-

ral Networks have been applied with the best re-

sults. One of the commonly used architectures in-

volves treating the input DNA sequence as categor-

ical variables. Each position in the sequence is one-

hot encoded, resulting in a vector where only one 

channel corresponds to the A-C-G-T nucleotides 

(with a value of 1) provided to the input layer. 

These kernels are followed by convolutional layers, 

which simplify the information to extract the most 

relevant concepts. Convolutional filters are initially 

trained on specific regions of interest with known 

regulatory properties. The knowledge gained by 

the convolutional neural network (CNN) during 

training can then be applied to new regions for ac-

curate predictions. This architecture has been suc-

cessfully applied to various types of sequencing 

data, particularly in the context of epigenomic stud-

ies. This overall architecture has been used on dif-

ferent types of sequencing data and has provided 

particularly interesting results in terms of epige-

nomic studies. For example, this type of architec-

ture has been applied to DNAase-seq data to pre-

dict cell-type specific regions of accessible chroma-

tin [24], to identify promoters and distal regulatory 

regions along mammalian genomes [25], to predict 

cell-type specific gene expression from DNA se-

quencing data and alterations of it associated to var-

iant alleles [26], and to identify genomic regions re-

sponsible for the three-dimensional chromatin fold-

ing in the nucleus [27] from genomic and Hi-C data. 

Considering that both the experimental and compu-

tational technologies used in these studies are rela-

tively young, this is arguably one of the most prom-

ising research fields for the next decades, with the 

potential to answer many of the open questions in 

functional genomics. 

 

Improvement of genome editing specificity 
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During the past decade, technological innovations 

in molecular biology have made genome editing 

easier, allowing the modification of the DNA se-

quence at a single nucleotide resolution[28]. The 

most successful technique to perform genome edit-

ing is CRISPR/cas9, where the identification of the 

target genomic region is mediated by a guide RNA 

(gRNA). The gRNA is a chimeric RNA consisting of 

a ~20nt guide sequence that identifies through base 

complementarity the target site in the genome and 

precisely directs the Cas9 protein to it. Some mis-

matches in the guide sequence can be tolerated and 

do not affect the ability to align and cut DNA, re-

sulting in off-target cleavages [29,30]. Accurate 

gRNA design maximizes on-target efficacy (sensi-

tivity) and minimizes off-target effects (specificity). 

ML and DL models have been used in this context 

to predict gRNA sequencing with high sensitivity 

and specificity, and several specific tools have been 

released in the last few years, for example, Deep-

SpCas9 [31], DeepCRISPR [32] , DeepCpf1 [33], 

CRISPRscan [34], among many other. These tools 

differ in terms of models and network architectures, 

nevertheless, the fundamental overall architecture 

described in the previous section still applies also in 

this context. Of course, other more complex net-

works exist, like the one used by DeepCRISPR[32], 

where a hybrid deep neural network is used com-

bining unsupervised and supervised representation 

learning to model single gRNAs using a set of ge-

nome-wide sgRNAs. Despite the outstanding re-

sults already achieved, this type of application of 

ML and DL on sequencing data still has some rele-

vant limitations [35]. In this context, the large 

amount of data needed to train prediction models is 

not always available, and quite often the available 

data show some challenges caused by the heteroge-

neity of sequencing platforms and cell types. 

Future Perspectives 

Both computational and molecular biology 
are continuing to grow at an impressive pace, as 
they did in the last decades. As shown in this review, 
integrating AI, ML and DL techniques with NGS 
data holds immense promise, but it also presents 
challenges. For example, the quality and quantity of 
NGS data pose hurdles— e.g. noise, biases, and ar-
tifacts- that can impact analyses and computational 
resources and strain existing infrastructure due to 
DL model demands. In addition, these models re-
quire a huge amount of data which is not always 
available, therefore one of the currently most rele-
vant challenges in the field is addressing small sam-
ple sizes and class imbalance affects model robust-
ness. Another limitation is that interpretability re-
mains an issue: black-box models lack transparency 
and the understanding of the molecular processes 
underneath a given prediction or classification 
based on nucleotides pattern often remains under 
understood. Bridging the gap between AI expertise 
and biological domain knowledge is critical and 
could improve transferability and generalization 
across diverse biological contexts as well. Last but 
not least, ethical concerns arise from handling sen-
sitive genomic data. Finding a balance between the 
extraordinary potential of AI in the medical field 
and the need for a careful safeguard of individual 
privacy are really hot topic involving both law and 
tech experts which currently remains an open issue. 
In summary, while AI, ML, and DL offer exciting 
prospects for genomics research, overcoming these 
challenges is crucial for realizing their full potential. 
Taken together these innovations are a new frontier 
of research and have the potential to strongly affect 
our possibilities to understand and interact with ge-
netic information, which will also require ethical 
considerations. 
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