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Abstract: The sigma-1 receptor S1R is a chaperone that resides mainly at the mitochondrion-associated 

endoplasmic reticulum ER membrane MAM, it is considered a “pluripotent modulator” in living systems, plays 

a critical role in maintaining neuronal homeostasis and acts as a dynamic pluripotent modulator in living 

systems. Given its specific localization at the MAM, S1R plays a major role regulating mitochondrial function, 

it is a therapeutic target in mental and neurodegenerative diseases including Alzheimer’s disease, Parkinson’s 

disease. N,N Dimethyl Tryptamine DMT is the S1R endogen agonists and we review the role of all-natural 5-

methoxi-N,N-dimethyltryptamine 5-MeO-DMT S1R agonist that produces high levels of ego dissolution or 

oceanic boundlessness  higher ratings of satisfaction with life and lower ratings of depression and stress. In vitro 

the 5-Meo-DMT shows strong modulation of synaptic and cellular plasticity in neurons. 5-MeO-DMT 

neuropharmacological S1R agonist is implicated in cellular bioenergetics activation, antiapoptotic and 

mitochondrial regulation of epigenetic landscape in neurons. S1R has been considered as a controller of cell 

survival and differentiation in neurons. The pharmacological benefits of all-natural 5-MeO-DMT are currently 

under research. This review compendia results, highlighting the key molecular mechanisms of S1Rs on 

mitochondrial functions and epigenetic modifications involved in the health and sickness phenotype 

development, and describe the possible pharmacological use of all-natural 5-MeO-DMT to “rescue” patients 

from sickness phenotype through mitochondrial activation. We focus on all-natural 5-MeO-DMT its clinical 

therapeutic implications benefit long-term effects on mental health and well-being of the patient possibly 

reprogramming and remodeling the epigenome, particularly in mental and neurodegenerative diseases. 

Keywords: Sigma1 receptor, mitochondria, energy, dysregulation, stress, ROS, epigenetic, disease, all-natural, 
5MeO-DMT, therapy. 

 

 

Introduction 

Hundreds of millions of people worldwide are af-
fected by the pandemic of mental1 and neurodegen-
erative2 diseases. Given the specific localization of 
the Sig-1R at the MAM, have been very explored as 
target regulations of the Sig-1R in mental and to 
neurodegenerative diseases including Alzheimer’s 
disease (AD), Parkinson’s disease (PD), among oth-
ers3. Sig-1R ligands are fundamental on mitochon-
drial dysfunction-induced neurodegeneration are 
addressed. DMT is the endogen agonist of sigma 

receptor and in this report, we particularly review, 
the role of all-natural 5-Meo-DMT as a pharmaco-
logical agonist for the Sigma 1 receptor4. All-natural 
5-methoxy-N,N-dimethyltryptamine, hereinafter 
referred to as all-natural 5-MeO-DMT, is a entheo-
gen substance found in the secretion from the paro-
toid glands of the Bufo alvarius toad is agonist of 
Sigma 1 receptor. The all-natural 5-MeO-DMT ad-
ministrated in humans in naturalistic settings as a 
treatment of mental health problems and as a means 
for spiritual exploration is currently researched. 
Numerous patents and clinical studies that describe 
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the pharmacological benefits of 5-MeO-DMT are 
ongoing5.  
The mitochondria are the power station that pro-
vides the necessary energy for the processes that 
sustaining life6. The mitochondria perform diverse 
interconnected functions, producing ATP and 
many biosynthetic intermediates while also contrib-
uting to cellular stress responses such as autophagy, 
apoptosis and epigenetic regulation7. Mitochondria 
form a dynamic, interconnected network that is in-
timately integrated with other cellular compart-
ments. In addition, mitochondrial functions extend 
beyond the boundaries of the cellular influence and 
organism's physiology by regulating communica-
tion between cells and tissues. These characteristics 
define mitochondria both as fundamental compo-
nents of our cells specially in neurons8. Mitochon-
drial dysfunction has emerged as a key factor men-
tal9 and neurodegenerative disorders10. In this re-
view we focus the regulation of cellular functions 
through the mitochondrial bioenergetic, signaling, 
antiapoptotic and epigenetics regulation pathways. 
Hence, we provide an innovative perspective in 
which we highlight the key molecular mechanisms 
advances in sigma-1 receptors on mitochondrial 
functions and epigenetic regulation on healthiness 
and sickness, with special focus on mental and neu-
rodegenerative diseases and clinical implications of 
all-natural 5-MeO-DMT S1R agonist. 
 
Mitochondria: In Healthiness and In Sickness 

Mitochondria are critical to cell and organ function; 
Mitochondria play a key role in metabolic homeo-
stasis, because of their central role in energy pro-
duction, control of cytosolic Ca2+ (calcium ion) lev-
els, lipid homeostasis, steroid synthesis, generation 
of Fe-S (iron–sulfur) centers, heme synthesis11, in-
nate immune response, and metabolic cell signal-
ing12–16. For all the above mentioned, mitochondrial 
dysfunction and altered organellar regulation are 
also associated with some more common diseases, 
including cancers, mental, neurodegenerative dis-
eases12,13. Mitochondria are the main regulator of 
cell survival/death as well as that for the ROS pro-
duction. 
 
Mitochondria produce ATP via oxidative phos-
phorylation (OXPHOS). In the matrix, tricarboxylic 
acid cycle (TCA) enzymes generate electron carriers 
(NADH and FADH2), which donate electrons to the 
IM-localized electron transport chain (ETC) and 
also generate reactive oxygen species (ROS) which 

can damage key components of cells, including li-
pids, nucleic acids, and proteins15. ROS has been 
suggested to contribute to diseases associated with 
mitochondrial dysfunction, including neurodegen-
eration. 
Another central function of mitochondria is ROS 
signaling and sensing. Mitochondria operates as re-
dox sensors that can alter energy states in response 
to the chemical environment of the cell and relative 
levels of endogenous metabolites such as iron (II), 
succinate, and ascorbate, as well as various forms of 
ROS. However, how ROS sensing is mediated by 
mitochondrial function and how different ROS 
sensing pathways overlap are not well understood. 
Changes in redox states influence DNA methyla-
tion because the oxidation of 5-methylcytosine to 5-
hydroxymethylcytosine in CpGs can perturb recog-
nition by methyl-binding proteins and subse-
quently alter methylation patterns and epigenetic 
regulation7,15. 
Metabolic epigenetics refers to nuclear alterations of 
chromatin and other factors that regulate gene ex-
pression resulting from changes in mitochondrial 
energetics and metabolism. The resulting metabo-
lites, in turn, mediate gene expression changes that 
control cellular processes, including energy homeo-
stasis16. Thus, energy status and metabolism are 
able to modulate epigenetic programming via chro-
matin structural changes and dynamics, DNA 
methylation, histone modifications, and non-coding 
RNA expression. Epigenetic modifiers include 
DNA methyltransferases, histone acetyl transfer-
ases, histone deacetylases, sirtuins (SIRTs), histone 
lysine demethylases, poly(ADP-ribose) polymer-
ases, and others that work coordinately to regulate 
gene expression. For instance, reprogramming of 
energy metabolism has been identified as hallmark 
of cancer17 and epigenetic control 18,19.  
Mitochondrial distribution and dynamics are influ-
enced by physical interaction between the mito-
chondrial outer membrane and diverse intracellular 
membranes, such as the plasma membrane, peroxi-
somes, ER, autophagosomes and lysosomes, termed 
mitochondria-associated membranes (MAMs). 
MAMs create unique environments or platforms for 
the localization and activity of components that 
function in shared inter-organellar functions, such 
as Ca2+ homeostasis and lipid biosynthesis20-22. 
MAM is critical in maintaining neuronal homeosta-
sis. Thus, given the specific localization of the S1R 
at the MAM, we highlight and propose that the di-
rect or indirect regulations of the S1R on mitochon-
drial dysfunctions intervenes to mental and 
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neurodegenerative diseases3. Neurons and muscle 
cells contain high levels of mitochondria due to a 
high demand of energy. The Central Nervous Sys-
tem (CNS) has a high rate of metabolism because 
neurons participate in facilitating the neurotrans-
mission and extending axons and dendrites to 
neighboring cells for impulse transmission23. Neu-
rons exert plasticity, exhibiting complex morpholo-
gies, and constitutively undergo synaptic modula-
tions when stimulated. Therefore, mitochondrial 
dysfunction detrimental to neurons and has been 
extensively discussed in neurodegeneration24. 
 

Biological and physiological function of Sigma 

receptors in mitochondria 

Biological and physiological function of Sigma re-
ceptors in mitochondria The S1R is a small (28 kDa), 
highly conserved, chaperone that resides mainly at 
the mitochondrion-associated endoplasmic reticu-
lum (ER) membrane (called the MAMs) and acts as 
a dynamic pluripotent modulator in living sys-
tems24. Chaperones are proteins that assist the cor-
rect folding of other protein clients. The S1R is 
known to play a role in regulating the Ca2+ signal-
ing between ER and mitochondria and in maintain-
ing the structural integrity of the MAM25. The MAM 
serves as bridge between ER and mitochondria reg-
ulating multiple functions such as Ca2+ transfer, 
energy exchange, lipid synthesis and transports, 
and protein folding that are pivotal to cell survival 
and defense. Therefore, the S1R serves as a commu-
nicator that bridges these two organelles and plays 
pivotal roles in mitochondrial functions26.  
Interestingly, the percentage of newly synthesized 
proteins that are correctly folded and thus are able 
to exit the ER is usually less than 10%. Because the 
action of chaperones is fundamental to the cell, 
chaperones are implicated in many diseases includ-
ing Huntington disease28, Parkinsonism29, stress 
disorders30. Under pathological conditions, the S1R 
is a receptor chaperone essential for the metabo-
tropic receptor signaling and for the survival 
against cellular stress losing its global Ca2+ homeo-
stasis the S1R translocates and counteracts the aris-
ing apoptosis31. 
The S1R receptor has a unique and versatile phar-
macological profile4,32 and its endogenous agonist is 
Dimethyl tryptamine (DMT). S1R ligands have 
therapeutic usages in regulating the stability of IP3 
receptors as well as the associated interorganelle 
Ca2+ signaling from the ER to mitochondrion un-
der normal or otherwise pathological conditions33-

36.  S1R bind with high affinity to several classes of 
chemically unrelated ligands such as neuroster-
oids37, neuroleptics, dextrobenzomorphans [DEX] 
and several psychostimulants such as cocaine37, 
methamphetamine [METH]37,38 methylenediox-
ymethamphetamine [MDMA]39 and methacathi-
none37,40. Consequently, it is thought that the SR 
may mediate the immunosuppressant, antipsy-
chotic41 and neuroprotective effects of many drugs42 
S1Rs regulate a number of neurotransmitter sys-
tems, including the glutamatergic [Glu], dopamin-
ergic [DA], serotonergic [5HT], noradrenergic [NE] 
and cholinergic [Ch] systems. As these transmitters, 
which interact with the S1Rs, are involved in many 
neuropsychiatric disorders their role has been eval-
uated in a number of these disorders43. In fact, sev-
eral lines of research have demonstrated that S1R 
play a role in the pathophysiology of neuropsychi-
atric disorders such as mood44, anxiety disorders45 
and schizophrenia26,46.   
The acute S1R actions include the modulation of ion 
channels (e.g. K+ channel), N-methyl-D-aspartate 
receptors (NMDARs)47, IP3R and s1R translocation. 
Chronic actions of S1Rs are considered to be the re-
sult of an up- or down regulation of the S1R itself. 
Recent in vitro and in vivo studies strongly point 
that S1Rs participate in membrane remodeling and 
cellular differentiation in the nervous system recon-
stitution in the brain implicated on drug abuse48. 
Metabolic studies support the view that S1R have 
functional significance in brain glucose metabolism 
as glucose utilization is affected by ligands in areas 
of brain that show high densities of sRs48. S1R might 
possess a constitutive biological activity, and that 
S1R ligands might merely work as modulators of 
the innate activity of this protein. The lack of post-
natal development of receptors in the CNS, and the 
fact that S1R sites are much denser in peripheral or-
gans, such as the liver49, immune and endocrine tis-
sues50,51, suggest a universal role for sRs in cellular 
function. Because of their widespread modulatory 
role, S1R ligands have been proposed to be useful 
in several therapeutic fields such as amnesic and 
cognitive deficits, depression and anxiety, schizo-
phrenia, analgesia and against some effects of drugs 
of abuse such as cocaine and METH and neuro-
degenerative diseases40,52. 
 

The mitochondrial role of the sigma1 receptor 

in neurodegenerative diseases 

Given the specific localization of the S1R at the 
MAM, we highlight and propose that the direct or 
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indirect regulations of the S1R on mitochondrial 
functions intervenes to neurodegenerative diseases.  
These receptors represent compelling putative tar-
gets for pharmacologically treating neurodegenera-
tive disorders. Neurodegenerative diseases with 
distinct genetic etiologies and pathological pheno-
types appear to share common mechanisms of neu-
ronal cellular dysfunction, including excitotoxicity, 
calcium dysregulation, oxidative damage, ER stress 
and mitochondrial dysfunction53,54. 
Sustained release of glutamate causes persistent ac-
tivation of NMDARs leading to neuronal excitotox-
icity, increasing intracellular calcium levels, fol-
lowed by stochastic failure of calcium homeostasis 
and necrotic cell death52. This toxicity results from 
activation of the mitochondrial permeability transi-
tion pore opening triggered by membrane poten-
tial-dependent uptake of calcium into the mito-
chondrial matrix53,54, contributing to neurodegener-
ation in acute and chronic CNS diseases, including 
ALS, AD, and PD disease55-57. Hence, one major 
mechanism by which S1R ligands may confer neu-
roprotection is through the regulation of intracellu-
lar calcium homeostasis58.  
The best evidence that ROS may be an underlying 
cause of neurodegeneration is the strong associa-
tion between the detection of increased ROS pro-
duction and the increased oxidative damage ob-
served in CNS disorders such as PD, AD and 
ALS59,60. Activation of Sig-1Rs may also mitigate 
ROS accumulation, possibly through modulation of 
ROS-neutralizing proteins. Furthermore, Sig-1R 
knockout or knockdown can increase oxidative 
damage61. 
Protein aggregation occurs under calcium dysregu-
lation, oxidative stress or aging, altering ER func-
tion and leading to the accumulation of unfolded or 
misfolded proteins within the ER lumen. This trig-
gers a stress response by the ER known as the un-
folded protein response (UPR) to restore protein 
folding homeostasis. The failure of protein homeo-
stasis is a common mechanism for many neuro-
degenerative diseases AD, PD, and HD 62,63,64.  
Mitochondrial fission and fusion are part of normal 
organellar maintenance, and are particularly signif-
icant in axons, in which mitochondria may have to 
travel long distances. Recent work has identified 
that the dynamin-related protein 1 (Drp1) is re-
cruited to ER-mitochondria contact sites and medi-
ates fission and it’s been shown that homozygous 
knockout of Drp1 is lethal65, while fragmented mi-
tochondria and elevated or modified Drp1 (i.e., in-
creased fission activity) are associated with AD, PD, 

and HD66. Mitochondria-MAM dysregulation has 
been proposed as the underlying cause of AD67 and 
may contribute to neuronal loss in other disease 
contexts68.  
S1Rs may also influence the expression of anti- and 
pro-apoptotic signals that target the mitochondria. 
Sig-1R activity positively regulates Bcl-2 expres-
sion, possibly through nuclear factor kappa B (NF-
kB) and/or extracellular signal-regulated kinase 
(ERK) pathways68,69. Since Bcl-2 has also been 
shown to interact with IP3Rs and enhance their ac-
tivity69, this positive regulation of Bcl-2 level may be 
another mechanism by which sigma 1 activity in-
creases IP3R-mediated mitochondrial calcium up-
take and ATP production, in addition to the S1R-
IP3R interaction described above. Activation of 
S1Rs may also decrease expression of Bax and apop-
tosis associated caspases, further promoting cell 
survival3,70,71.  
 
Alzheimer Disease (AD) is a complex, multifactorial 
disease characterized by severe cognitive impair-
ment and memory loss. Decreased S1R protein lev-
els were observed in the human living and cortical 
postmortem brain tissue72,73 and similar results 
were found in PET scan studies, in which Sig-1R ex-
pressions were lower in the brain of early AD pa-
tients74.S1R expression may be involved in the ther-
apeutic effect of HDAC6 inhibitor on AD pathol-
ogy75. Preclinical evidences suggest that S1R ago-
nists might be useful in treating AD, no selective 
S1R agonist is currently available for clinical use3, 
specific sigma 1 receptor agonist as all-natural 5-
MeO-DMT4 has advantages to be consider in clini-
cal use.   
 
Parkinson’s disease (PD) is a slowly progressing 
disorder, causing impaired motor functions such as 
bradykinesia or tremor, and other non-motor com-
plications. The pathological characteristic of PD is a 
massive death of dopaminergic neurons in substan-
tia nigra pars compacta (SNpc) and the deposit of 
Lewy bodies composed of α-synuclein, ubiquitin 
and neurofilaments. S1R expressions were lower in 
putamen of PD patients as demonstrated by PET 
studies76. S1R also attenuate Dopamine (DA) tox-
icity involved in the etiology of PD61.  S1R agonists 
were found to reduce oxidative stress via several 
signaling pathways77. Endogenous S1Rs could toni-
cally inhibit DA-induced NF-κB activation, which 
protects cell from death. Thus, S1R ligands may rep-
resent new therapeutic targets for PD3. These data 
suggest that S1Rs are one of the endogenous 
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substrates that counteract the dopamine cytotoxi-
city that would otherwise cause apoptosis61. 

Endogenous DMT and all-natural 5-MeO-DMT are 

sigma 1 receptor agonists - Mode of action 

Endogenous DMT is Sigma 1 receptor agonist a 
molecule synthesized, stored, and released it is ag-
onist of S1R78 in cells periphery and central nervous 
system79.  DMT is Central Nervous System neuro-
transmitter involved in sensory perception80. En-
zyme indolethylamine-N-methyltransferase 
(INMT), is the responsible of DMT synthesis81. 
INMT is widely expressed in the body, primarily in 
peripheral tissue such as the lungs, thyroid and ad-
renal gland, skeletal muscle, heart, small intestine, 
stomach, retina, pancreas, lymph nodes and 
blood82. It is densely located in the anterior horn of 
the spinal cord82–87. Highest INMT activity has been 
found within the brain in the following areas: un-
cus, medulla, amygdala, frontal cortex83, frontal-pa-
rietal and temporal lobes87,88, pineal gland87 and pla-
centa88. DMT has been measured in several human 
body fluids, including blood82, urine and cerebral 
spinal fluid. Endogenous DMT binds to sigma-1 re-
ceptors as an agonist at half maximal effective con-
centration  EC50 = 14 μM. INMT co-localizes with 
sigma 1 receptor in C-terminals of motor neurons89. 
Only a small fraction of endogenous DMT is re-
leased into the bloodstream90. DMT has a transport 
process91 accomplished via ATP-dependent uptake 
similar to the biological priority of glucose and 
amino acids, showing the universal role DMT in bi-
ological processes. The three-step process by which 
DMT is accumulated and stored in neurons are de-
scribed92. Once uptake and storage of DMT has 
been completed, it has remained stored in vesicles 
for at least 1 week and to be released under appro-
priate stimuli93. Through these three steps, periph-
eral synthesis of DMT, consumption of DMT con-
taining plant matter, or systemic administration of 
DMT can influence central nervous system func-
tions91. In cardiovascular system the effect of DMT 
was determined, by administration of DMT to hu-
man volunteers, a progressive decrease in heart rate 
was observed over the four doses, but not in blood 
pressure 79. 
 
Endogenous DMT plays a significant role in physi-
ological mechanisms via S1R-MAM-mitochondrial 
pathway. S1R94 agonists are neuroprotective via 
several mechanisms. DMT and also 5-MeO-DMT 
reduced inflammation via S1R and induced neu-
ronal plasticity95, which is a long-term regenerative 

process that goes beyond neuroprotection96. DMT 
and 5-MeO-DMT modulate innate and adaptive in-
flammatory responses through the S1R of human 
monocyte-derived Dendritic cells97. DMT mediated 
S1R activity induces neuronal plasticity changes in 
newborns96. Exogeneous DMT stimulates the in 
vitro differentiation of neural progenitors toward a 
neuronal phenotype through S1R. DMT in vivo ac-
tion mediated by S1R improved performance in 
learning tasks that has been linked to hippocampal 
neurogenesis. Moreover, previous studies per-
formed in humans98, using the traditional medicine 
of native peoples of South America Ayahuasca 
which main component is DMT infusion99 has anti-
depressant activity, a therapeutic effect usually 
linked to hippocampal neurogenesis100. 
 
All-natural 5-MeO-DMT  is found as a natural ex-
tract from the secretions of the Sonoran Desert Bufo 
alvarius toad gland and is considered an Amerin-
dian medicine Seris, an aboriginal group from the 
state of Sonora, in Mexico5. Some reports suggest 
that the secretion of the Bufo alvarius toad have been 
used historically by native peoples in the south-
western territory of the USA and northern Mex-
ico101. This entheogenic sigma 1 receptor agonist  
has recently been associated with cognitive gains, 
antidepressant effects and changes in brain areas re-
lated to attention and neural regeneration4.  5-MeO-
DMT is a neuroregulatory substance, sigma-1 re-
ceptor4 is its neuropharmacological target. 5-MeO-
DMT is the most potent entheogen with strong dis-
solution of the ego, a conscious state marked by a 
loss or diminution of one’s sense of self and a lack 
of first-person experience102, influence on percep-
tion5, cellular bioenergetics activation, antiapop-
totic4 and mitochondrial regulation of epigenetics. 
5-MeO-DMT mechanism of action is mediated S1R 
signaling pathway a “pluripotent modulator” in 
living systems, as a controller of cell survival and 
differentiation25,58.  The S1R is the primary pharma-
cological molecular targets for 5-MeO-DMT and its 
mitochondrial activation play roles dissolving 
symptoms of some psychiatric and neurodegenera-
tive disorders by the epigenetic regulate91. Possibly, 
5-MeO-DMT shed light into the therapy on recov-
ery patients health from mental diseases and neuro-
degenerative diseases. 
 
In vivo pharmacology studies of 5-MeO-DMT93 have 
been conducted in mice, rats, gerbils, hamsters, 
guinea pigs, rabbits, goldfish, cats, dogs, sheep, pigs 
and primates. The pharmacokinetics of 5-MeO-
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DMT has been studied the maximum concentration 
(Cmax) in plasma is reached after 5–6 min following 
an intraperitoneal (IP) injection, the terminal half-
life (t1/2) is 12–19 min in mice and Cmax = 5–10 min 
and t1/2 = 6–16 min in rats. 5-MeO-DMT presents a 
hydrophobic behavior (3.3 oil/water partition coef-
ficient) and readily crosses the blood–brain barrier 
(BBB). 5-MeO-DMT is distributed to the liver, kid-
neys and brain. Brain concentrations of 5-MeO-
DMT in the rat were 1.7-fold higher compared to 
plasma after IP injection, with highest concentra-
tions in the cortex, thalamus, hippocampus, basal 
ganglia, medulla, pons and cerebellum. In the 
mouse brain, 5-MeO-DMT distributes to the cortex, 
hippocampus, hypothalamus and striatum after IP 
administration4,92.  It has been demonstrated that 
the pharmacokinetics of 5-MeO-DMT follows a 
non-linear pattern for both IP and intravenous (IV) 
administration of high doses in mice. This non-line-
arity is also reflected in corresponding increases in 
brain concentration of 5-MeO-DMT. This enzyme 
mediates the production of the psychoactive metab-
olite bufotenine from 5-MeO-DMT5. 
 
Long-term potentiation (LTP) is a persistent 
strengthening of synapsis based on recent patterns 
of activity. These are patterns of synaptic activity 
that produce a long-lasting increase in signal trans-
mission between two neurons103. The opposite of 
LTP is long-term depression, which produces a 
long-lasting decrease in synaptic strength. Specifi-
cally, 5-MeO-DMT modulates proteins associated 
with long-term potentiation. Proteins found upreg-
ulated by 5-Meo-DMT are NMDAR, CaMK2 
(Ca2+/calmodulin-dependent protein kinase), and 
CREB (cyclic AMP-responsive element-binding 
protein)20.  
 
5-MeO-DMT is a weak 5-HT reuptake inhibitor but 
has no appreciable effects on monoamine release 
nor on noradrenaline or dopamine. S1R contributes 
to the brain plasticity effects of 5-MeO-DMT. S1R is 
an endogenous regulator of dendritic spine mor-
phology and neurite outgrowth104,105. 5-MeO-DMT 
is a direct molecular mediator of plasticity, which 
has effects on cell surface and extracellular proteins 
involved in regulating synaptic architecture. An up-
regulation of integrins98, netrins, plexins, and sem-
aphorins were observed in 5-MeO-DMT-treated or-
ganoids, was also found in major depressive disor-
der patients who responded well to antidepres-
sants, suggesting the importance of this class of pro-
teins in brain plasticity. srGAP, an intracellular 

signaling molecule with a role in processes under-
lying synaptic plasticity, higher cognitive function, 
learning, and memory is significantly downregu-
lated106. S1R agonists exert neuroprotective effects 
by regulating intracellular calcium levels107, pre-
venting expression of pro-apoptotic genes108, and 
protecting mRNA against anti-apoptotic genes such 
as Bcl-23.  Psychological effects such as changes in 
perception and thought, renewed sensation of nov-
elty, ineffability, and awe109 possible is derive di-
rectly from the strong modulation of synaptic and 
cellular plasticity promoted by 5-MeO-DMT. 

Mitochondria-directed epigenetic changes and 

role of 5-MeO-DMT 

Cells respond to environmental stressors through 
several key pathways, including 
response to ROS, nutrient and ATP sensing, DNA 
damage response, and epigenetic alterations. Mito-
chondria play a central role in these pathways 
through energetics, ATP production, metabolites 
generated in TCA cycle, also through and mito-
chondria–nuclear signaling related to mitochondria 
morphology, biogenesis, fission/fusion, mitoph-
agy, apoptosis, and epigenetic regulation110. 
Possibly the neuroprotective, neuroregeneration, 
anti-apoptosis and neuroplasticity111 effects from 5-
MeO-DMT agonist S1R is mediated through mito-
chondrial epigenetic regulation pathway. Each neu-
ron contains up to 2 million mitochondria112. The 
energy-hungry brain is especially vulnerable to 
power station problems during mitochondrial dam-
age113. Mitochondrial regulation of epigenetic land-
scape alterations are reversible, epigenetic pro-
cesses early in life might play a role in defining in-
ter-individual trajectories of human behavior and 
epigenetic mechanisms contribute to later-onset 
neurological dysfunction and disease19. Some epi-
genetics diseases targets with significant neuronal 
death and neurological dysfunction include Alz-
heimer’s Disease (AD), Parkinson’s Disease (PD), 
Huntington’s Disease (HD), epilepsy, stroke and 
traumatic brain injury (TBI)114. Alterations of the 
S1R gene have been associated with severe neuro-
degenerative disorders24. 

 
mtDNA damage or mitochondrial damage has been 
associated with a mitochondrial damage check-
point “mitocheckpoint”115. OXPHOS defect is 
checkpoint mechanism induced due to instability of 
the nuclear genome116. The mitocheckpoint coordi-
nates and maintains the proper balance between 
apoptotic and anti-apoptotic signals. Upon damage 
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to mitochondria, mitocheckpoint is activated to 
help repair damage to mitochondria, restore normal 
mitochondrial function, avoid induction of mito-
chondria-defective cells and induce changes to the 
nuclear epigenome117. Cross talk between the nu-
cleus and mitochondria of individual cells may lead 
to a mitochondrial damage response as a result of 
incurred damage. If mitochondria are severely 
damaged, such an event will trigger apoptosis. If 
damage to mitochondria is persistent and defective 
mitochondria accumulate in the cell, it would lead 
to instability of the nuclear genome114.  

 
DNA methylation is a major epigenetic modifica-
tion of DNA gene expression possible mitochondria 
regulated71. Epigenetic modifications within the 
mammalian nuclear genome include DNA methyl-
ation (5-mC) or hydroxymethylation (5-hmC)118,120. 
Mammalian mitochondria have recently been iden-
tified to have mitochondrial DNA methyltransfer-
ase 1 (mtDNMT1) activity, 5-mC and 5-hmC. Shock 
et al. identified translocation of nuclear DNMT1 to 
the mitochondrial matrix is regulated by expression 
of a conserved mitochondria targeting sequence, 
upstream of the gene’s transcription start site 
within the nuclear encoded gene120.  Alterations in 
mtDNMT1 directly affected transcription from the 
light and heavy strands of mtDNA suggesting a cor-
relation between 5-hmC and 5-mC mediated tran-
scriptional regulation of mtDNA by a nuclear en-
coded gene. These findings provide new evidence 
implicating epigenetic regulation of the mitochon-
drial genome by nuclear encoded translocated 
mtDNMT1 relative to mitochondrial dysfunc-
tion121–123. Reduced levels of co-factors due to mito-
chondrial impairment/ dysfunction could have sig-
nificant effects on regulation of the nuclear genome. 
Mitochondrial dysfunctions invoke mitochondria-
to-nucleus retrograde responses in human cells124.  

 
Mitochondrially targeted DNMT1 transcript vari-
ant (mtDNMT1) comprises about 1–2% of total 
DNMT1 transcripts and is upregulated by the hy-
poxia-responsive transcription factors peroxisome 
proliferator-activated receptor gamma coactivator 1 
alpha (PGC1a) and nuclear respiratory factor 1 
(NRF1) and via the release of p53 from the DNMT1 
promoter125. This finding suggests that mtDNMT1 
plays a regulatory role during oxidative stress, con-
firming the link between oxidative stress and mito-
chondrial function. Similar capacities for 
mtDNMT1 and its nuclear counterpart were indi-
cated by the finding that mtDNMT1 shows clear 

CpG-dependent mtDNA interactions proportional 
to the amount of CpGs in the target amplicons126. 
The reduced mtDNA methylation is the result or a 
consequence of this mitochondrial dysfunction. 
mtDNA methylation activation would be involved 
in mitochondrial biogenesis (LSP, HSP1) and 
maintenance of the electron transport chain 
(HSP2)127. 

 
Maternal mitochondrial imprinting and chromo-
somes imprinting from parents’ patterns, would 
represent a biological memory of what the parents 
experienced128. Transmission caused by environ-
mental factors, such as the parents’ childrearing be-
havior129. That these transgenerational effects have 
been also epigenetically transmitted to their chil-
dren. Integrating both hereditary and environmen-
tal factors through the lifetime, epigenetics adds a 
new and more comprehensive transgenerational 
transmission of trauma130, nightmares131, posttrau-
matic stress disorder PTSD132, symptoms in mental 
diseases and the neurodegeneration. Moreover, the 
transmission may continue beyond the second gen-
eration and also include the grandchildren, great 
grandchildren and perhaps others as well. This pro-
cess of transgenerational transmission of trauma 
(TTT) has been repeatedly described in the aca-
demic literature for more than half a century131. The 
epigenetic marks affect gene expression patterns in 
the nervous system and mitochondrial dysfunction 
and epigenetic imbalance show to influence the pro-
gression of many mental and neurological disor-
ders128. S1R agonist4 5-MeO-DMT5 are possible 
through epigenetic regulation by activation mito-
chondrial pathway reversible promote restoring to 
healthy cellular functions by restoring the epige-
netic landscape.  

 
Familial early-onset Alzheimer’s disease (AD) is 
more probable in individuals coming from mothers 
diagnosed with AD than from fathers diagnosed 
with AD. Studies in animal models have shown ma-
ternal imprinting in the ovum lead to alterations ge-
netic and/or epigenetic in the nuclear and/or the 
mitochondrial DNA. These modifications that are 
transmitted to the new living beings affect more mi-
tochondrial proteins and, therefore, the mitochon-
drial function may be affected in adulthood by 
trends present in the ovum133.  

 
PD, AD133, HD and other neurodegenerative dis-
eases123 and forms of acute brain injury24. In our per-
spective is possible activation of epigenetic 
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mechanism7 through S1-R and mitochondrial func-
tion in mental and neurodegenerative diseases, 
whose restore by 5-MeO-DMT agonist promote ac-
tivation mitochondrial pathways, mitochondria bi-
oenergetics function134–137, mitochondrial oxidative 
respiration138 and mitochondrial epigenetic regula-
tion, restored mtDNMT nuclear activity, increasing 
levels mitochondrial FAD and α-KG co-factors who 
have significant effects on regulation of the nuclear 
genome. 5-MeO-DMT modulates proteins involved 

in long-term potentiation (LTP), in addition to mor-
phogenesis and maturation of dendritic spines, 
while inhibiting neurodegeneration and apoptosis. 
5-MeO-DMT activate score for dendritic spine and 
cellular protrusion formation, microtubule and cy-
toskeletal organization. Biological functions such as 
neurodegeneration, apoptosis, and neuron lesion 
are inhibited by 5-MeO-DMT4 through S1R-mito-
chondria pathway. 

 

Figure 1: 5-MeO-DMT Sigma 1 receptor agonist nuclear epigenetic regulation/chromatin modification through mito-
chondria–via sirtuins (e.g., SIRT1 and SIRT6), HDACs, and HATs, which require acetyl CoA from the TCA cycle; nu-
trient sensing through the NAD+/NADH and ATP/AMP sensing; catalysis of H3K4me2 and H3K27me3, demethyla-
tion mediated by LSD1 and the JMJD protein family, catalyzed using mitochondria synthesized co-factors FAD and α-
ketoglutarate. DNA repair and redox signaling pathways. Dialog mitochondria and nucleus: mtDNMTs are associated 
with healthy mitochondria. The reduced mtDNA methylation is the result of mitochondrial dysfunction. mtDNMT1 
from nucleus are translocated in mitochondrial dysfunction. 

Clinical implications of the therapeutic use of 

all-natural 5-MeO-DMT 

All-natural 5-MeO-DMT139 is high potency, ultra-

rapid onset, and short duration of entheogen ef-

fects, primarily is sigma 1 receptor agonist. Native 

peoples of North, Central, South America, included 

Amazon region America possibly used the ancestral 

medicine in millenary sacred ritualist healing and 

consciousness evolution purposes according their 

cosmovision. All-natural 5-MeO-DMT produces 

profound altered state of consciousness and ego 

dissolution, including mystical experiences as inner 

experiences involving an intensely felt fading of the 

sense of self and/or feelings of increased connect-

edness, up to and including the sense of complete 

unity163. These kinds of feelings go well beyond our 

normal day to day sense of self-awareness. In ordi-

nary consciousness, there is generally the impres-

sion that there is a me on the one hand and then, on 

the other hand, everything else. Under some cir-

cumstances, however, this sense of self ––during 

such moments, one’s sense of self can fade into the 

background and become a part of, rather than apart 
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from, everything else140, with beneficial long-term 

effects on mental health and well-being of the pa-

tient139. 

Naturalistic use of toad secretion containing 5-

MeO-DMT was reported that the intensity of the ex-

perience is associated with improvements in 

measures of satisfaction with life and reduction of 

psychological distress in participants without an 

underlying mental health condition141. Effects fol-

lowing natural 5-MeO-DMT administration are al-

teration in auditory and time perception, emotional 

states amplifications, and strong ego dissolution 

short-lasting, and reliably induces a “peak” mysti-

cal spiritual experience141, state consider to be a core 

predictor of the efficacy of entheogen all-natural 5-

MeO-DMT139. 5-MeO-DMT cause rapid and sus-

tained reductions in symptoms of depression, anxi-

ety, and stress. 5-MeO-DMT also stimulates neuro-

endocrine function and immunoregulation93. 

Formulations of interest are smoked, vaped, IM, in-

tranasal, intravenous for high bioavailability of 5-

MeO-DMT because they avoid first-pass metabo-

lism. Smoked and vaporized administration pro-

vides fast onset of subjective experiences with high 

intensity and short duration. At present, biophar-

maceutical companies with an interest in synthetic 

5-MeO-DMT are exploring and developing vapor-

ized, intranasal, IM, and intravenous formulations 

for delivering 5-MeO-DMT141,142. In a dose-ranging 

Phase I clinical trial to assess safety and psychoac-

tive effects of 5-MeO-DMT, demonstrated the safety 

of vaporized dosing up to 18 mg for administration 

via inhalation. Importantly, the rapid onset and 

short duration of the 5-MeO-DMT experience ren-

der it more suitable for individual dose-finding 

strategies compared with longer-acting psychedel-

ics143.  

Clinical implication of the all-natural 5-MeO-DMT 

receptor sigma agonist and its role on mitochon-

drial activation it is possible applicated to the ther-

apy of serious psychiatric disorders—Schizophre-

nia (SCZ), major depressive disorder (MDD), and 

borderline personality disorder (BPD) diseases with 

a different range of debilitating symptoms and 

prognosis, and show similar alterations in energy 

metabolism processes144. Proteomic data show that 

SCZ and BPD share 32 altered proteins, mostly re-

lated to mitochondrial electron transport, response 

to ROS and glycolysis. They share some pathophys-

iological traits and data analysis revealed seven 

proteins altered both in BPD and MDD, while five 

of those are different subunits of the NADH dehy-

drogenase complex in the electron transport 

chain144. This is consistent with previous reports of 

impaired functioning of OXPHOS complexes in 

MDD144,145 and decreased nuclear expression of 

genes coding for mitochondrial respiratory mecha-

nisms in BPD146 both of which lead to reduced mi-

tochondrial energy production. major depression 

has been described as the initial symptom of mito-

chondrial disease in a large sample size of adult pa-

tients147. Mitochondrial function and energy metab-

olism were shown to play an important role in reg-

ulating social behaviors148. Limited energy produc-

tion impairs adaptive neuronal capacity and con-

tribute to the development of psychopathologies 

such as SCZ, BPD, and MDD under stressful stimu-

lus149. 

All-natural 5-MeO-DMT patented composition 

comprise its possible use in the therapy to mental 

and neurodegenerative diseases139. One of the most 

important benefit uses of all-natural 5-MeO-DMT 

reported are the patient’s recovery from addiction 

prompted by cocaine5. S1R mediated cocaine has 

dose-dependent interaction between histone 

deacetylase (HDAC)1, HDAC3 and HDAC3 and to 

therefore affect chromatin compaction and gene ex-

pression149. All-natural 5-MeO-DMT via S1R activa-

tion trigger patients’ recovery from symptom with 

persistent improvements in life satisfaction and 

psychopathological symptoms139,141,150,151,152. A sin-

gle dose, 24-hour-treatment with 5-MeO-DMT, 

showed major downregulation of mGluR5 after 

treatment with 5-MeO-DMT. mGluR5 has a role in 

the rewarding effects for several drugs of abuse. It 

was shown that mice lacking the mGluR5 gene do 

not self-administer cocaine and show no cocaine-in-

duced hyperactivity153. They also have attenuated 

somatic signs of nicotine withdrawal, and reduced 

ethanol consumption behavior154, suggesting 

mGluR5 is involved in addiction4,155. 

All-natural 5-MeO-DMT-mediated S1R is involved 

in the reported retrieval and healing of traumatic 

memories139,156: “Epigenetic modifications, such as 

DNA methylation, occur in response to environ-

mental influences to alter the functional expression 

of genes in an enduring and potentially, intergener-

ationally transmissible manner. As such, they may 

explain interindividual variation, as well as the 

long-lasting effects of trauma exposure”132.  The 
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reconsolidation and fear extinction of traumatic 

memories require the involvement of epigenetic 

mechanisms. Several countries where 5-MeO-DMT 

is unregulated offer retreats and treatment pro-

grams157. A survey of 51 US Special Operations 

Forces Veterans from one such retreat, with com-

bined 5-MeO-DMT and ibogaine treatments, indi-

cated the experience was therapeutic for their trau-

matic experiences, suicidal ideation, depression and 

anxiety 155,157 In a survey of 20 individuals from the 

same retreat center, 75% reported a ‘complete mys-

tical experience’, as measured by MEQ-30155,158. 
Notable features of natural 5-MeO-DMT are the re-
ported high rates of the ego-dissolution and mysti-
cal experiences, with long-term positive therapeutic 
outcomes is calling for consistent pharmacognosy 
and clinical exploration158. Some of the benefits re-
lated to 5-MeO-DMT mediated by S1R and mito-
chondrial function to mitigate symptoms of some 
psychiatric and neurodegenerative disorders symp-
toms are linked possibly to these extensive epige-
netic modifications produced by 5-MeO-DMT-S1R-
mitochondrial epigenetic pathway. For this reason, 
all-natural 5-MeO-DMT S1R ligand is of great inter-
est as possible therapeutic agent against CNS disor-
ders24,148. 

 

Conclusion 

Mental159 and neurodegenerative160 diseases are the 
possible epigenetics regulation complex products 
from under environmental or epigenetically inher-
itance stress manifested and controlled by S1R-
MAM-mitochondrial dysfunction with large degree 
of variation depending on the neurons tissue af-
fected. Endogenous and exogenous DMTs are 
sigma 1 receptor agonist and regulate adult neuro-
genesis in vitro and in vivo with mental health ben-
efits and antidepressant effects in patients98,99,100. We 
have reviewed comprehensively a possible strong-
est neurobiological reprogrammed with the novel 
pharmacological sigma 1 receptor agonist the all-
natural 5-MeO-DMT139 ancestral healing via Sig-1R-
MAM-mitochondrial activation. S1R is an ER resi-
dent chaperone that is highly enriched at the MAMs 
that controls mitochondria Ca2+ flux, bioenergetic, 
oxidative and stress responses and mitochondrial 
epigenetic regulation. Pharmacological S1R agonist 
5-MeO-DMT therapeutic implications in mental 
and neurodegenerative diseases such as Alzheimer, 
Parkinson will drive the most important resources 
for expansion of all-natural 5-MeO-DMT successful 
legal therapy. 
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